Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(37): 33330-33348, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36157724

RESUMO

Zika virus (ZIKV) infection is one of the mosquito-borne flaviviruses of human importance with more than 2 million suspected cases and more than 1 million people infected in about 30 countries. There are reported inhibitors of the zika virus replication machinery, but no approved effective antiviral therapy including vaccines directed against the virus for treatment or prevention is currently available. The study investigated the chemoinformatic design and profiling of derivatives of dasabuvir, efavirenz, and tipranavir as potential inhibitors of the zika virus RNA-dependent RNA polymerase (RdRP) and/or methyltransferase (MTase). The three-dimensional (3D) coordinates of dasabuvir, efavirenz, and tipranavir were obtained from the PubChem database, and their respective derivatives were designed with DataWarrior-5.2.1 using an evolutionary algorithm. Derivatives that were not mutagenic, tumorigenic, or irritant were selected; docked into RdRP and MTase; and further subjected to absorption, distribution, metabolism, excretion, and toxicity (ADMET) evaluation with Swiss-ADME and pkCSM web tools. Some of the designed compounds are Lipinski's rule-of-five compliant, with good synthetic accessibilities. Compounds 20d, 21d, 22d, and 1e are nontoxic with the only limitation of CYP1A2, CYP2C19, and/or CYP2C9 inhibition. Replacements of -CH3 and -NH- in the methanesulfonamide moiety of dasabuvir with -OH and -CH2- or -CH2CH2-, respectively, improved the safety/toxicity profile. Hepatotoxicity in 5d, 4d, and 18d is likely due to -NH- in their methanesulfonamide/sulfamic acid moieties. These compounds are potent inhibitors of N-7 and 2'-methylation activities of ZIKV methyltransferase and/or RNA synthesis through interactions with amino acid residues in the priming loop/"N-pocket" in the virus RdRP. Synthesis of these compounds and wet laboratory validation against ZIKV are recommended.

2.
J Biomol Struct Dyn ; 40(3): 995-1009, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32924851

RESUMO

Schistosomiasis is a neglected disease of considerable health importance in tropical and subtropical regions. Its treatment relies on the use of praziquantel or oxamniquine but there are reported cases of treatment failures due to resistance or tolerance. Again, derivatives of praziquantel and oxamniquine have not shown significant activities than their parent compounds. The study predicted approved drugs with possible antischistosomal activities. Four schistosomal drug targets were obtained from Protein Data Bank and six hundred and twelve (612) approved drugs including their isomers were selected based on their Molinspiration® bioscore similarities with reference compounds (praziquantel, oxamniquine, [(2S,3S,4S,5S,6S)-3,4,5-triacetyloxy-6-sulfanyloxan-2-yl] methyl acetate, [propylamino-3-hydroxy-buta-1,4-dionyl]-isoleucylproline). The selected drugs and drug targets were obtained and prepared for molecular docking simulations. The molecular docking simulations were performed using AutoDockvina®-1.1.2 after validation of docking protocols while molecular dynamics simulations were performed with GROMACS-4.5.5. The binding energies were calculated using MMPBSA (Molecular Mechanics Poisson-Boltzmann Surface Area). Tolmetin was predicted as potential antischistosomal drug with binding energies of -231.064 ± 18.550 and -338.636 ± 36.900 KJ/mol for sulfotransferase and thioredoxin glutathione reductase (TGR) respectively. Also diflunisal was predicted as potential antischistosomal drug with binding energies of -168.641 ± 20.370 and -290.117 ± 43.800 KJ/mol for sulfotransferase and TGR respectively. Non-covalent interactions and conformational changes were responsible for molecular recognitions and specificities and average bond measurement showed that carboxylic functional groups in diflunisal and tolmetin may interact covalently with -SH group of Cys159 in TGR. Confirmation of covalent interactions and in vitro validations are recommended.Communicated by Ramaswamy H. Sarma.


Assuntos
Esquistossomose , Esquistossomicidas , Reposicionamento de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxamniquine/química , Oxamniquine/uso terapêutico , Esquistossomose/tratamento farmacológico , Esquistossomicidas/farmacologia , Esquistossomicidas/uso terapêutico
3.
Microorganisms ; 8(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32326119

RESUMO

Vector-borne flaviviruses (VBFs) affect human health worldwide, but no approved drugs are available specifically to treat VBF-associated infections. Here, we performed in silico screening of a library of U.S. Food and Drug Administration-approved antiviral drugs for their interaction with Zika virus proteins. Twelve hit drugs were identified by the docking experiments and tested in cell-based antiviral assay systems. Efavirenz, tipranavir, and dasabuvir at micromolar concentrations were identified to inhibit all VBFs tested; i.e., two representatives of mosquito-borne flaviviruses (Zika and West Nile viruses) and one representative of flaviviruses transmitted by ticks (tick-borne encephalitis virus). The results warrant further research into these drugs, either individually or in combination, as possible pan-flavivirus inhibitors.

4.
Curr Comput Aided Drug Des ; 16(4): 451-459, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31284869

RESUMO

BACKGROUND: Sulfotransferase family comprises key enzymes involved in drug metabolism. Oxamniquine is a pro-drug converted into its active form by schistosomal sulfotransferase. The conformational dynamics of side-chain amino acid residues at the binding site of schistosomal sulfotransferase towards activation of oxamniquine has not received attention. OBJECTIVE: The study investigated the conformational dynamics of binding site residues in free and oxamniquine bound schistosomal sulfotransferase systems and their contribution to the mechanism of oxamniquine activation by schistosomal sulfotransferase using molecular dynamics simulations and binding energy calculations. METHODS: Schistosomal sulfotransferase was obtained from Protein Data Bank and both the free and oxamniquine bound forms were subjected to molecular dynamics simulations using GROMACS-4.5.5 after modeling it's missing amino acid residues with SWISS-MODEL. Amino acid residues at its binding site for oxamniquine was determined and used for Principal Component Analysis and calculations of side-chain dihedrals. In addition, binding energy of the oxamniquine bound system was calculated using g_MMPBSA. RESULTS: The results showed that binding site amino acid residues in free and oxamniquine bound sulfotransferase sampled different conformational space involving several rotameric states. Importantly, Phe45, Ile145 and Leu241 generated newly induced conformations, whereas Phe41 exhibited shift in equilibrium of its conformational distribution. In addition, the result showed binding energy of -130.091 ± 8.800 KJ/mol and Phe45 contributed -9.8576 KJ/mol. CONCLUSION: The results showed that schistosomal sulfotransferase binds oxamniquine by relying on hybrid mechanism of induced fit and conformational selection models. The findings offer new insight into sulfotransferase engineering and design of new drugs that target sulfotransferase.


Assuntos
Oxamniquine/farmacologia , Pró-Fármacos/farmacologia , Schistosoma/enzimologia , Esquistossomicidas/farmacologia , Sulfotransferases/metabolismo , Animais , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxamniquine/metabolismo , Pró-Fármacos/metabolismo , Schistosoma/química , Schistosoma/efeitos dos fármacos , Schistosoma/metabolismo , Esquistossomose/tratamento farmacológico , Esquistossomose/parasitologia , Esquistossomicidas/metabolismo , Sulfotransferases/química
5.
ISRN Hematol ; 2013: 629640, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224093

RESUMO

Clinical manifestations of malaria primarily result from proliferation of the parasite within the hosts' erythrocytes. The malaria parasite digests hemoglobin within its digestive vacuole through a sequential metabolic process involving multiple proteases. The activities of these proteases could lead to the production of ROS which could lead to the death of the parasites due to the destruction of their membrane. The action of SDS on hemoglobins can be likened to the way malarial proteases destabilizes host hemoglobin. Hence, the study was designed to determine the binding parameters of SDS and H2O2 for normal, sickle trait carrier and sickle hemoglobins at pH 5.0 and 7.2 using UV-VIS Titration Spectrophotometry. Hb-SDS interactions were significantly different at pH 5.0 but were not at pH 7.2. Also, Hb-H2O2 interactions were statistically different at pH 5.0 and 7.2. The interactions suggest that HbA and HbS are easily destabilized than HbAS and that HbAS has more affinity for H2O2. These suggest a production of more ferryl intermediates or hydroxyl radicals. All these interactions may hinder the development of the malaria parasite at the intraerythrocytic stage and could likely account for a significant proportion of the mechanism that favours the resistance to malaria by individuals with HbAS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...